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ABSTRACT. Nonlinear problems of wave-packet propagation along the interface between
the two fluids of different densities with taking into account the surface tension are
investigated. Two problems are considered, the one for two half-spaces, the another
for the layer over a half-space. Asymptotic solutions are developed on the basis of the
method of multiple scale expansions. Unlike previous investigations dealing with only
three approximations in this paper four asymptotic approximations have been developed
by using symbolic algebra. The evolution equations are obtained in the form of the
nonlinear higher-order Schrédinger equations. The stability of solutions is investigated.
As aresult, the new region of stability for capillary waves and the new region of instability
for gravity waves have been discovered in the case of the layer of finite thickness unlike
the case of two fluid half-spaces.

INTRODUCTION

Investigations of nonlinear and internal waves propagating in fluids lead to solving
strongly nonlinear boundary value problems. Therefore the exact analytical solutions
have been obtained only for a few particular problems. As a result asymptotic approach-
es have been extensively developed and they are of dominating tools to provide quali-
tative and quantative analysis. Nevertheless it is well-known that with increasing order
of approximations the difficulties to obtain results catastrofically rise. That is why over-
whelming majority of considerations are in the framework of classical evolution equations
of KdV, Schrodinger type and others. At the same time, the analysis of contribution of
higher harmonics to wave evolution is the problem of great interest due to the essential
influence of higher harmonics on stability and existence of finite amplitude waves. One of
the typical urgent example is a formation of freak waves in ocean.

This paper treats gravity waves on the interface between two infinite fluids which are
assumed to be incompressible, inviscid and irrotational. The surface tension is taken into
account unlike most previous investigations. The problem is analyzed on the basis of
the method of multiple scale expansions. Basic analysis of the wave propagation on fluid
interface between two semi-infinite fluids with taking into account the surface tension has
been presented by Nayfeh([1]. The extension of this problem to the case of two-fluid system
consisting of upper layer over lower semi-infinite fluid has been obtained by Avramenko
and Selezov(2].

Investigations of interfacial waves in two-fluid systems have been in a focus of many
researchers for a long time. Among of them it is necessary to select the problems taking
into account the suﬂgace tension which essentially influences capillary-gravitational waves
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when the effects of high harmonics are of great importance. At the same time, recently
many investigations have been devoted to formation of freak waves including both its
evolution and stability [3], [4], [5]. It demands to consider the influence of high harmonics
what essentially complicates the analysis.

In the article [6] the two-fluid system with both upper and lower fluids of finite depth
was considered on the basis of original Euler equations in the assumptions that the layer
thickness is small relatively to horizontal scale (wavelength), but the wave amplitude
is considered to be constant. The solutions are found by expansions in small thickness
parameter.

Nonlinear waves on the interface between two infinite fluids of different densities have
been investigated in [7] on the basis of expansion of desired functions to Fourier series.

The extreme characteristics of waves were investigated including the case of small den-
sity of the upper fluid [8]. Propagation of interfacial solitary waves in two-fluid medium
confined by upper and lower rigid planes without taking into account the surface tension
has been studied. The solutions was constructed in the form of a power series expansions
in terms of a parameter which depends on the reciprocal of Froude number.

Kakutani and Yamasaki [9] have investigated internal waves by the reductive pertur-
bation method and obtained KdV equation instead of Schrodinger equation.

Recently, experimental investigations have been conducted by Huq for the three-layer
fluid with a thin intermediate layer and in the presence of the uniform ambient current
and the discharge source located within the intermediate layer. As a result, the generation
of solitary waves in such a system has been discovered experimentally by Huq [10]. It
has been shown that there are such parameters when the solitary waves are originated on
the interface and then they propagate to the incident ambient flow. Initial analysis of the
wave propagation in such a system [11] was based on the Stokes’ type expansion leading
to nonlinear Schrodinger equation.

The interfacial nonlinear waves have been investigated also in articles [12], [13], [14].
The analysis presented in this paper developes and extends the previous works [15], [16],
[17].

The case of wave packets propagation along the interface of the fluid half-space and
the fluid layer situated above was studied in [2], where the problem of the wave-packets
stability is discussed. For the solution of the nonlinear boundary value problems the
method of multiple scales expansions was used.

Here we consider the fourth-order problem of wave-packet propagation at the interface
between two fluids. On this basis the new evolution equation in the form of the nonlinear
third order Schrédinger equation has been obtained with a compact form of nonlinear
part. The stability ofg the solutions is investigated in detail.

1. THE SYSTEM "LAYER — HALF-SPACE”

The mathematical statement of the problem for wave-packet propagation along the
interface between the upper layer and a half-space is presented as nonlinear boundary value
problem with kinematic and dynamic conditions at the interface for desirable functions

#;(z, z,t) and n(z,t)

Vig:=0. in .9 (1)
Nt — Piz=—PizNz at z=1(z,t), (2)
10— pp2z+ (1= p)n+0.5(Vepr)” = 0.5p (Vipa)* —
-T(1+ ???z)_s'fz nae =0, &6 % =0(E4) ()
Vo] 20 as z— —oo, (4)
Bos =0 & B =8 (5)

where @; (j = 1,2) are the velocity potentials; n is the interface elevation; @ = {(z,y, 2),
—oo<z <00, —00<y<0o, z<0} and Qy={(z,y,2), —0<T<00, —00 <Y< o, 2>0},
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p = p2/p1. Dimensionless values are introdused using the characteristic length L, char-

acteristic time (L/ g)” ?_ density of the lower fluid p;, where g is the acceleration of the
gravity. Introdusing the characteristic length L leads to the dimensionless surface tension
T* = T/(L%pg). The asterisk is dropped.

The approximate solution of the nonlinear problem (1)-(4) is determined using the
method of multiple scale expansions for the fourth-order approximation

4 .
flE;t)= ZEnT;‘n (zo, z1, 232, 23,%0, 1,82, 83) + O (55) 2 (6)

n=1

4
Pj (:E,Z} t) = Zenfpjn(zﬂe L1, T2, x3:zat01tlft2:| tS) + O (65) ) (] = 132) (7)

n=1

where ¢ is small dimensionless parameter characterizing the steepness ratio of the wave,
z, ="z, t, = e™t.

The construction of the fourth-order approximation is connected with a huge comber-
some algebra. Here at first these difficulties were overcome using symbolic computations
in software package. '

Substituting (6) and (7) into (1)-(5) and equating coefficients of like powers of € yelds
to four linear problems. The first, second and third-order problems were formulated, and
also the solutions of the first- and second-order problems and solvability conditions of the
second- and third-order ones were obtained in (2] for another dimensionless parameters,
where the dimensionless surface tension was taken T = 1.

The results taking into account the dimensionless parameters above introduced are of
the form:
the dispersion relationship

w? = (1 + pethkR)~ k(1 — p + TH?), 8)
fhexsdintions nEtie Rrsisribs problemn
m = Aexpif — Aexp(—ib), (9)
é11 = —iwk ™ (Aexpif + Aexp(—if)) exp kz, (10)
$a1 = iwk™ (A expif + Aexp(—if))chk(h — z)sh™'kh, (11)

where A(zy,Z2,23,t1,82,%3) is the complex conjugate of the complex envelope
A(z1,Ta, T3, t1,t2,t3), § = kzg — wip, k is the wave number and w is the wave frequency
of the center of the wave-packets.

For each of the three next approximations the solvability conditions have been obtained
using a software package

Ay +0'A, =0, (12)
Ay 4+ 0 Ay, — 058" A s, =—ikw Y1 pcthRR)“TA?A, ()
Ay +'A,, — ‘iwﬁA,zlzz_— w"[6 + A zy2,2, S (14)
= kw!(1 4+ pethkh) " [JAAA,, — I(kw-1)(A2A) ],
where o' = dw/dk, " = dw/dk® " = Pw/dk?
I k2 asT?k® + a;T%k* + a,Tk? + ap (15)

b Tk? + by ’
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and
as = 2p*sh2kh + 2p°sh’kh + 6p°,

as = —17.5p%(1 — p)sh2kh — 2p(5p® — 8p + 3)sh’khsh2kh +
+(p® + 3p — 5p + 1)sh*khsh2kh — 2p(p® — 5p° + 3p + 1)sh®kh —
—p(19p° — 39p* + 25p + 5)sh*kh — .
—4p(11p® — 14p® + 5p — 2)sh’kh — 33p%(1 — p)

a; = 17p%(1 — p)sh2kh +
+p(0.5p° — 13p* + 24.5p — 12)sh’khsh2kh +
+(—6.5p* + 5p° + 10p® — 9p + 0.5)sh*khsh2kh +
+p(p* — 18p° + 20p% + 10p — 13)sh®kh +
+p(17p* — T4p> + 83p* — 12p — 14)sh*kh +
+2p(23p* — 58p% + 49p® — 32p + 4)sh’kh + 36p%(1 — p)?

ap = —1.5p%(1 — p)®sh2kh —
—2p(2p* — 9p° + 15p> — 11p + 3)sh®’khsh2kh +
+(—8p° + 28p* — 40p® + 32p* — 16p + 4)sh*khsh2kh —
—4p(2p° — 8p* + 16p° — 20p® + 14p — 4)sh®kh —
—4p(5p° — 17p* + 29p° — 25p? + 11p — 2)sh*kh +
+p(—15p° + 57p* — T7p° + 39p* — 4)sh®kh + 9p*(1 — p)®

b, =sh’kh[16p%(1—p)?sh2kh+4(3p°> —3p>+ p—1)sh’khsh2kh +
+4p(5p° — 5p + Tp — T)sh*kh —
—8p(1 — p)’sh*kh — 12p*(1 — p)]

bo =sh’kh[2p?(1—p)?sh2kh+2(4p* —6p° +4p> —2p+"1)sh?khsh2kh +
+Hp(p*—2p°+6p* —8p-+4)sh’kh+
+4p(p* — 20° + 4p> — 8p + 3)sh*kA]

In (15) the effect of the surface tension is presented by the terms containing 7" in the first,
second and third powers.
It can be noted that the coefficients I and J are connected with the expression

J = —idI/dk. (16)

Let’s multiply equations (12) - (14) by ¢, €% and &£°, respectively, and then add together
all equations of this system. As a result, we obtain the evolution equation in the form of
the high-order nonlinear Schrédinger equation \

A+ WA, — "2 Ay — "3 Ager =

= —&%(1 + pethkh) " {ikw ' AA[TA + I'A,) + (kw™1) I(AZ4) .},
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~ where I' = 01/0k.
The solution of the equation (17) is of the form

A = aexp (——Ez-——— EIagt) g (18)
1+ pcthkh w
where a = const.
Investigating the stability of (18) leads to the inequality
" <0, ) (19)

which is numerically analysed in the 3rd part.
2. THE SYSTEM ”HALF-SPACE — HALF-SPACE”

The mathematical statement of the problem for the wave-packet propagation along the
interface of two semi-infinite fluids is presented as follows

Vip; =0 in (20)

e==tiPyis — —‘P.i-.r’?,x at z=7 (:C,t) ’ (21)

Q14— ppas + (1= p) 7 +0.5(Vey)® — 0.50 (Vi) — (22)
. +?7r,2=:)_af2 Ne=0 at z=n(z.1),

Vel =0 as z— Foo, (23)

where ; = {(z,y,2), —00 <z < 00, —0 <y < 00, z < 0} and Q, = {(z,y,2), —0 <
T < 00, —00 < y < 00, z> 0}. Dimensionless values are introdused like in the 1st part.
The approximate solution of the nonlinear problem (20)-(23) was determined using the
same method of multiple scale expansions (6), (7).

The dispersion equation and solvability conditions are of the form

w'=(1+p) k(1 - p+ Tk (24)
Ay +w'Ag =0, - (25)
Ay, +w'Ag, — 0.50w" A 0, = —thw (1 + p) 1 HA%A, (26)

! LIPS | "
A +w Aﬂ:s - W A,wlwz Thw /6 E Anxlzlxl =

= kw (1 + p) M JoAAA, — Lo(kwt) (A%A) ,,], (27)
where
Io = K2[(1 — 6p + p?)K4T2 + 0.5(1 — 31p + 31p% — p°)K*T+ 28)
+4(1 = 2p 4+ 20> = 2p° + p*)]/[2(1 + p)*(1 — p — 2Tk?)],
and the coefficients Iy and J, are connected as
Jo = —101,/0k.
The evolution equation is the nonlinear Schrodinger equation
A+ WAz — w2l Age — " [31 - A gor = (29)

= —e2(1+ p) " {ikw TAA[TA+ [LA ;) + (kw™ ') Io(A%A) 2},

where [ = 01,/ 0k.
Investigating the stability leads to the following stability condition

Iow" <0, (30)

“of the same form as for the system "layer - half-space”.
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3. NUMERICAL CALCULATIONS AND CONCLUSIONS

Numerical calculations have been carried out to investigate the stability of wave train
envelope propagating along the interface of the two fluids: "half-space — half-space” and
"layer — half-space”. The results of calculations are presented at Figs.1,2 in the form of
diagrams "density ratio p = p,/p; — wave number k* = kL.

Conclusions:

- surface gravity waves at the limiting case k& — oo are stable under the condition
when the density of upper fluid (layer or half-space) is lesser than the density of lower
semi-infinite fluid p < 1;

— in the case of the layer over semi-infinite fluid for surface gravity waves a new region of
instability in the form of loop appears in the neighbourhood of the origin (k =0, p = 0),
while for capillary waves a narrow region of stability appears in the neighbourhood of the
point (k= 0, p = 0);

— for the system "layer — half-space” for any fixed layer thickness h the two unstable
regions of capillary waves (v/2 — 1) < p < 1 and 1 < p < (v/2 + 1)? exist, while for the
system "half-space ~ half-space” these regions combine to one (v/2—1)? < p < (v2+1)%;

— in general case the plane p, k is separated onto the region of linear instability which
in turn is separated onto such regions: three regions of nonlinear stability and five regions
of nonlinear instability. The stability diagram for value of the surface tension coeffcient T'
can be obtained by compressing corresponding diagram for 7' = 1 in T'*/? time vertically;

~ decreasing the layer thickness h essentially narrows down the regions of nonlinear
instability and extends the regions of nonlinear stability of capillary-gravitational waves;

- in the case of absence of the apper layer (p = 0) the surface tension leads to destabi-

lization of waves for nondimensional wave numbers between 0.393 - T-1/2 0.707 . T~1/2,
2-

1.5+

0.51

%
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Fig.1 Stability diagram for system "half-space — half-space”: non-

linear stable S, nonlinear unstable — U
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Fig.2 Stability diagram for system “layer - half-space” as T* =
nonlinear stable S, nonlinear unstable — U

(a)-h*=5(b) h =12 (c) A*=1
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